Dynamic impedance is correlated with static impedance and seizure quality parameters in bifrontal electroconvulsive therapy

Author:

Exner JanORCID,Deuring GunnarORCID,Seifritz ErichORCID,Brühl Annette BeatrixORCID

Abstract

AbstractBackground:To evoke a therapeutically effective seizure, electrical stimulation in electroconvulsive therapy (ECT) has to overcome the combined resistivity of scalp, skull and other tissues. Static impedances are measured prior to stimulation using high-frequency electrical alternating pulses, dynamic impedances during passage of the stimulation current. Static impedance can partially be influenced by skin preparation techniques. Earlier studies showed a correlation between dynamic and static impedance in bitemporal and right unilateral ECT.Objective:This study aims at assessing the correlation of dynamic and static impedance with patient characteristics and seizure quality criteria in bifrontal ECTMethods:We performed a cross-sectional single-centre retrospective analysis of ECT treatments at the Psychiatric University Hospital Zurich between May 2012 and March 2020 and used linear mixed-effects regression models in 78 patients with a total of 1757 ECT sessions.Results:Dynamic and static impedance were strongly correlated. Dynamic impedance was significantly correlated with age and higher in women. Energy set and factors positively (caffeine) and negatively (propofol) affecting seizure at the neuronal level were not associated with dynamic impedance. For secondary outcomes, dynamic impedance was significantly related to Maximum Sustained Power and Average Seizure Energy Index. Other seizure quality criteria showed no significant correlation with dynamic impedance.Conclusion:Aiming for low static impedance might reduce dynamic impedance, which is correlated with positive seizure quality parameters. Therefore, good skin preparation to achieve low static impedance is recommended.

Publisher

Cambridge University Press (CUP)

Subject

Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3