Abstract
Recall the integral definition of the gamma function: for a > 0. By splitting this integral at a point x ⩾ 0, we obtain the two incomplete gamma functions:(1)(2)Γ(a, x)is sometimes called the complementary incomplete gamma function. These functions were first investigated by Prym in 1877, and Γ(a, x) has also been called Prym's function. Not many books give these functions much space. Massive compilations of results about them can be seen stated without proof in [1, chapter 9] and [2, chapter 8]. Here we offer a small selection of these results, with proofs and some discussion of context. We hope to convince some readers that the functions are interesting enough to merit attention in their own right.
Publisher
Cambridge University Press (CUP)
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献