EVIDENCE REQUIRED BY HEALTH TECHNOLOGY ASSESSMENT AND REIMBURSEMENT BODIES EVALUATING DIAGNOSTIC OR PROGNOSTIC ALGORITHMS THAT INCLUDE OMICS DATA

Author:

Barna Alexandre,Cruz-Sanchez Teresita M,Brigham Karen Berg,Thuong Cong-Tri,Kristensen Finn Boerlum,Durand-Zaleski Isabelle

Abstract

Objectives:Multi-analyte assays with algorithmic analyses (MAAAs) use combinations of circulating and clinical markers including omics-based sources for diagnostic and/or prognostic purposes. Assessing MAAAs is challenging under existing health technology assessment (HTA) methods or practices. We undertook a scoping review to explore the HTA methods used for MAAAs to identify the criteria used for clinical research and reimbursement purposes.Methods:This review included only non-companion (stand-alone) tests that are actionable and that have been evaluated by leading HTA or insurer/reimbursement bodies up to September 2017.Results:Twenty-five reports and articles evaluating seventeen MAAAs were examined, most of which have been developed in oncology. The two main models used were the EUnetHTA Core model and the Evaluation of Genomic Applications in Practice and Prevention ACCE framework. Clinical validity and utility criteria were used, as were economic, ethical, legal, and social aspects. Economic evidence on MAAAs was scarce, and there is no consensus on whether the perspectives used are sufficiently broad to include all relevant stakeholders.Conclusions:Clinical utility and efficiency were the most used criteria, with stronger evidence needed linking the use of the algorithm with the clinical outcomes in real-life practice. HTA bodies must as well consider questions related to the analytical validity of MAAAs or with organizational aspects. The two main models, the EUnetHTA Core model and the ACCE framework, could be adapted to the assessment of MAAAs.

Publisher

Cambridge University Press (CUP)

Subject

Health Policy

Reference39 articles.

1. PerMed. Shaping Europe's vision for personalised medicine [Internet]. [cited May 23, 2018]. http://www.permed2020.eu/_media/PerMed_SRIA.pdf (accessed July 12, 2018).

2. Can and should value-based pricing be applied to molecular diagnostics?

3. Meleth, S , Reeder-Hayes, K , Ashok, M , Technology assessment of molecular pathology testing for the estimation of prognosis for common cancers [Internet]. Rockville, MD: Agency for Healthcare Research and Quality (US); 2014 [cited November 30, 2016]. (AHRQ Technology Assessments). http://www.ncbi.nlm.nih.gov/books/NBK285410/ (accessed July 12, 2018).

4. Palmetto, GBA. Molecular Diagnostic Program (MolDX®) [Internet]. [cited December 1, 2016]. http://www.palmettogba.com/moldx (accessed July 12, 2018).

5. Assessing value of innovative molecular diagnostic tests in the concept of predictive, preventive, and personalized medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3