Mapping collective behavior in the big-data era

Author:

Bentley R. Alexander,O'Brien Michael J.,Brock William A.

Abstract

AbstractThe behavioral sciences have flourished by studying how traditional and/or rational behavior has been governed throughout most of human history by relatively well-informed individual and social learning. In the online age, however, social phenomena can occur with unprecedented scale and unpredictability, and individuals have access to social connections never before possible. Similarly, behavioral scientists now have access to “big data” sets – those from Twitter and Facebook, for example – that did not exist a few years ago. Studies of human dynamics based on these data sets are novel and exciting but, if not placed in context, can foster the misconception that mass-scale online behavior is all we need to understand, for example, how humans make decisions. To overcome that misconception, we draw on the field of discrete-choice theory to create a multiscale comparative “map” that, like a principal-components representation, captures the essence of decision making along two axes: (1) aneast–westdimension that represents the degree to which an agent makes a decision independently versus one that is socially influenced, and (2) anorth–south dimensionthat represents the degree to which there is transparency in the payoffs and risks associated with the decisions agents make. We divide the map into quadrants, each of which features a signature behavioral pattern. When taken together, the map and its signatures provide an easily understood empirical framework for evaluating how modern collective behavior may be changing in the digital age, including whether behavior is becoming more individualistic, as people seek out exactly what they want, or more social, as people become more inextricably linked, even “herdlike,” in their decision making. We believe the map will lead to many new testable hypotheses concerning human behavior as well as to similar applications throughout the social sciences.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3