From simple associations to systematic reasoning: A connectionist representation of rules, variables and dynamic bindings using temporal synchrony

Author:

Shastri Lokendra,Ajjanagadde Venkat

Abstract

AbstractHuman agents draw a variety of inferences effortlessly, spontaneously, and with remarkable efficiency – as though these inferences were a reflexive response of their cognitive apparatus. Furthermore, these inferences are drawn with reference to a large body of background knowledge. This remarkable human ability seems paradoxical given the complexity of reasoning reported by researchers in artificial intelligence. It also poses a challenge for cognitive science and computational neuroscience: How can a system of simple and slow neuronlike elements represent a large body of systemic knowledge and perform a range of inferences with such speed? We describe a computational model that takes a step toward addressing the cognitive science challenge and resolving the artificial intelligence paradox. We show how a connectionist network can encode millions of facts and rules involvingn-ary predicates and variables and perform a class of inferences in a few hundred milliseconds. Efficient reasoning requires the rapid representation and propagation of dynamic bindings. Our model (which we refer to as SHRUTI) achieves this by representing (1) dynamic bindings as the synchronous firing of appropriate nodes, (2) rules as interconnection patterns that direct the propagation of rhythmic activity, and (3) long-term facts as temporal pattern-matching subnetworks. The model is consistent with recent neurophysiological evidence that synchronous activity occurs in the brain and may play a representational role in neural information processing. The model also makes specific psychologically significant predictions about the nature of reflexive reasoning. It identifies constraints on the form of rules that may participate in such reasoning and relates the capacity of the working memory underlying reflexive reasoning to biological parameters such as the lowest frequency at which nodes can sustain synchronous oscillations and the coarseness of synchronization.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Reference307 articles.

1. Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition

2. Reasoning with conditionals containing negated constituents;Oaksford;Journal of Experimental Psychology: Learning, Memory and Cognition,1992

3. The Logic of Plausible Reasoning: A Core Theory

Cited by 414 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3