A solution to the tag-assignment problem for neural networks

Author:

Strong Gary W.,Whitehead Bruce A.

Abstract

AbstractPurely parallel neural networks can model object recognition in brief displays – the same conditions under which illusory conjunctions (the incorrect combination of features into perceived objects in a stimulus array) have been demonstrated empirically (Treisman 1986; Treisman & Gelade 1980). Correcting errors of illusory conjunction is the “tag-assignment” problem for a purely parallel processor: the problem of assigning a spatial tag to nonspatial features, feature combinations, and objects. This problem must be solved to model human object recognition over a longer time scale. Our model simulates both the parallel processes that may underlie illusory conjunctions and the serial processes that may solve the tag-assignment problem in normal perception. One component of the model extracts pooled features and another provides attentional tags that correct illusory conjunctions. Our approach addresses two questions: (i) How can objects be identified from simultaneously attended features in a parallel, distributed representation? (ii) How can the spatial selectional requirements of such an attentional process be met by a separation of pathways for spatial and nonspatial processing? Our analysis of these questions yields a neurally plausible simulation of tag assignment based on synchronizing feature processing activity in a spatial focus of attention.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Cited by 198 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3