Can robots make good models of biological behaviour?

Author:

Webb Barbara

Abstract

How should biological behaviour be modelled? A relatively new approach is to investigate problems in neuroethology by building physical robot models of biological sensorimotor systems. The explication and justification of this approach are here placed within a framework for describing and comparing models in the behavioural and biological sciences. First, simulation models – the representation of a hypothesis about a target system – are distinguished from several other relationships also termed “modelling” in discussions of scientific explanation. Seven dimensions on which simulation models can differ are defined and distinctions between them discussed:1. Relevance: whether the model tests and generates hypotheses applicable to biology.2. Level: the elemental units of the model in the hierarchy from atoms to societies.3. Generality: the range of biological systems the model can represent.4. Abstraction: the complexity, relative to the target, or amount of detail included in the model.5. Structural accuracy: how well the model represents the actual mechanisms underlying the behaviour.6. Performance match: to what extent the model behaviour matches the target behaviour.7. Medium: the physical basis by which the model is implemented.No specific position in the space of models thus defined is the only correct one, but a good modelling methodology should be explicit about its position and the justification for that position. It is argued that in building robot models biological relevance is more effective than loose biological inspiration; multiple levels can be integrated; that generality cannot be assumed but might emerge from studying specific instances; abstraction is better done by simplification than idealisation; accuracy can be approached through iterations of complete systems; that the model should be able to match and predict target behaviour; and that a physical medium can have significant advantages. These arguments reflect the view that biological behaviour needs to be studied and modelled in context, that is, in terms of the real problems faced by real animals in real environments.

Publisher

Cambridge University Press (CUP)

Subject

Behavioral Neuroscience,Physiology,Neuropsychology and Physiological Psychology

Cited by 195 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kinematic and aerodynamic analysis of a Microraptor-inspired foldable wing mechanism;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2024-09-13

2. Estimating orientation in natural scenes: A spiking neural network model of the insect central complex;PLOS Computational Biology;2024-08-15

3. Emergence of Human Oculomotor Behavior in a Cable-Driven Biomimetic Robotic Eye Using Optimal Control;IEEE Transactions on Cognitive and Developmental Systems;2024-08

4. I2Bot: an open-source tool for multi-modal and embodied simulation of insect navigation;2024-07-16

5. Fly Me to the Micron: Microtechnologies for Drosophila Research;Annual Review of Biomedical Engineering;2024-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3