Non-adiabatic modulation of premixed-flame thermoacoustic frequencies in slender tubes

Author:

Flores-Montoya EnriqueORCID,Muntean VictorORCID,Sánchez-Sanz MarioORCID,Martínez-Ruiz DanielORCID

Abstract

This paper presents an experimental study of the influence of heat losses on the onset of thermoacoustic instabilities in methane–air premixed flames propagating in a horizontal tube of diameter,$D = 10$mm. Flames are ignited at the open end of the tube and propagate towards the closed end undergoing strong oscillations of different features owing to the interaction with acoustic waves. The frequency of oscillation and its axial location are controlled through the tube length$L$and the intensity of heat losses. These parameters are respectively modified in the experiments by a moveable piston and a circulating thermal bath of water prescribing temperature conditions. Main experimental observations show that classical one-dimensional predictions of the oscillation frequency do not accurately describe the phenomena under non-adiabatic real scenarios. In addition to the experimental measurements, a quasi-one-dimensional analysis of the burnt gases is provided, which introduces the effect of heat losses at the wall of the tube on the interplay between the acoustic field and the reaction sheet. As a result, this analysis provides an improved description of the interaction and accurately predicts the excited flame-oscillation harmonics through the eigenvalues of the non-adiabatic acoustics model. Unlike the original one-dimensional analysis, the comparison between the flame oscillation frequency provided by the non-adiabatic extended theory and the frequencies measured in our experiments is in excellent agreement in the whole range of temperatures considered. This confirms the importance of heat losses in the modulation of the instabilities and the transition between different flame oscillation regimes.

Funder

Ministerio de Ciencia, Innovación y Universidades

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3