Abstract
The nonlinear dynamics of a two-sided collapsible channel flow is investigated by using an immersed boundary-lattice Boltzmann method. The stability of the hydrodynamic flow and collapsible channel walls is examined over a wide range of Reynolds numbers
$Re$
, structure-to-fluid mass ratios
$M$
and external pressures
$P_e$
. Based on extensive simulations, we first characterise the chaotic behaviours of the collapsible channel flow and explore possible routes to chaos. We then explore the physical mechanisms responsible for the onset of self-excited oscillations. Nonlinear and rich dynamic behaviours of the collapsible system are discovered. Specifically, the system experiences a supercritical Hopf bifurcation leading to a period-1 limit cycle oscillation. The existence of chaotic behaviours of the collapsible channel walls is confirmed by a positive dominant Lyapunov exponent and a chaotic attractor in the velocity-displacement phase portrait of the mid-point of the collapsible channel wall. Chaos in the system can be reached via period-doubling and quasi-periodic bifurcations. It is also found that symmetry breaking is not a prerequisite for the onset of self-excited oscillations. However, symmetry breaking induced by mass ratio and external pressure may lead to a chaotic state. Unbalanced transmural pressure, wall inertia and shear layer instabilities in the vorticity waves contribute to the onset of self-excited oscillations of the collapsible system. The period-doubling, quasi-periodic and chaotic oscillations are closely associated with vortex pairing and merging of adjacent vortices, and interactions between the vortices on the upper and lower walls downstream of the throat.
Funder
National Computational Infrastructure
Australian Respiratory Council
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献