A macroscopic two-length-scale model for natural convection in porous media driven by a species-concentration gradient

Author:

Gasow Stefan,Kuznetsov Andrey V.ORCID,Avila MarcORCID,Jin YanORCID

Abstract

The modelling of natural convection in porous media is receiving increased interest due to its significance in environmental and engineering problems. State-of-the-art simulations are based on the classic macroscopic Darcy–Oberbeck–Boussinesq (DOB) equations, which are widely accepted to capture the underlying physics of convection in porous media provided the Darcy number, $Da$ , is small. In this paper we analyse and extend the recent pore-resolved direct numerical simulations (DNS) of Gasow et al. (J. Fluid Mech, vol. 891, 2020, p. A25) and show that the macroscopic diffusion, which is neglected in DOB, is of the same order (with respect to $Da$ ) as the buoyancy force and the Darcy drag. Consequently, the macroscopic diffusion must be modelled even if the value of $Da$ is small. We propose a ‘two-length-scale diffusion’ model, in which the effect of the pore scale on the momentum transport is approximated with a macroscopic diffusion term. This term is determined by both the macroscopic length scale and the pore scale. It includes a transport coefficient that solely depends on the pore-scale geometry. Simulations of our model render a more accurate Sherwood number, root mean square (r.m.s.) of the mass concentration and r.m.s. of the velocity than simulations that employ the DOB equations. In particular, we find that the Sherwood number $Sh$ increases with decreasing porosity and with increasing Schmidt number $(Sc)$ . In addition, for high values of $Ra$ and high porosities, $Sh$ scales nonlinearly. These trends agree with the DNS, but are not captured in the DOB simulations.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3