Abstract
Shock-induced fluid-layer evolution has attracted much attention but remains a challenge mainly because the coupling between layers remains unknown. Linear solutions are first derived to quantify the layer-coupling effect on the shocked dual-layer evolution. Next, the motions of the waves and interfaces of a dual layer are examined based on the one-dimensional gas dynamics theory. Shock-tube experiments on the dual-layer, single-layer and single-mode interface are then performed to validate the linear solutions and investigate the reverberating waves inside the layers. It is proved that the layer-coupling effect destabilises the dual layer, especially when the initial layers are thin, and the reverberating waves impose additional instabilities on all interfaces. Our findings suggest that a slow/fast configuration with a large thickness in a dual layer can facilitate the suppression of hydrodynamic instabilities.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献