Abstract
Just as a solid object would, a liquid jet or a stream of droplets impacting a free surface deforms and perforates it. This generic flow interaction, met in everyday life but also in cutting edge industrial processes, has puzzled scientists for centuries. Lee et al. (J. Fluid Mech., vol. 921, 2021, A8) present an experimental study of a simple droplet train interacting with a liquid bath and identify two stages in the interaction: a first where a cavity elongates and finally bursts, and a second where the interface is steadily punched by the incoming stream. Each of these regimes is explained with elementary but effective models arising from first principles, thereby revealing a full and simple picture of the physics of making holes in liquids.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献