Transition in an infinite swept-wing boundary layer subject to surface roughness and free-stream turbulence

Author:

De Vincentiis LucaORCID,Henningson Dan S.ORCID,Hanifi ArdeshirORCID

Abstract

The instability of an incompressible boundary-layer flow over an infinite swept wing in the presence of disc-type roughness elements and free-stream turbulence (FST) has been investigated by means of direct numerical simulations. Our study corresponds to the experiments by Örlü et al. (Tech. Rep., KTH Royal Institute of Technology, 2021, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291874). Here, different dimensions of the roughness elements and levels of FST have been considered. The aim of the present work is to investigate the experimentally observed sensitivity of the transition to the FST intensity. In the absence of FST, flow behind the roughness elements with a height above a certain value immediately undergoes transition to turbulence. Impulse–response analyses of the steady flow have been performed to identify the mechanism behind the observed flow instability. For subcritical roughness, the generated wave packet experiences a weak transient growth behind the roughness and then its amplitude decays as it is advected out of the computational domain. In the supercritical case, in which the flow transitions to turbulence, flow as expected exhibits an absolute instability. The presence of FST is found to have a significant impact on the transition behind the roughness, in particular in the case of a subcritical roughness height. For a height corresponding to a roughness Reynolds number $Re_{hh}=461$ , in the absence of FST the flow reaches a steady laminar state, while a very low FST intensity of $Tu =0.03\,\%$ causes the appearance of turbulence spots in the wake of the roughness. These randomly generated spots are advected out of the computational domain. For a higher FST level of $Tu=0.3\,\%$ , a turbulent wake is clearly visible behind the element, similar to that for the globally unstable case. The presented results confirm the experimental observations and explain the mechanisms behind the observed laminar–turbulent transition and its sensitivity to FST.

Funder

H2020 European Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference40 articles.

1. A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance

2. Örlü, R. , Tillmark, N. & Alfredsson, P.H. 2021 Measured critical size of roughness elements. Tech. Rep. KTH Royal Institute of technology, retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-291874.

3. Roughness-induced transition by quasi-resonance of a varicose global mode

4. STABILITY AND TRANSITION OF THREE-DIMENSIONAL BOUNDARY LAYERS

5. Roughness-Induced Bypass Transition, Revisited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3