Abstract
Modulation of fluid temperature fluctuations by particles due to thermal interaction in homogeneous isotropic turbulence is studied. For simplicity, only thermal coupling between the fluid and particles is considered, and momentum coupling is neglected. Application of the statistical theory used in cloud turbulence research leads to the prediction that modulation of the intensity of fluid temperature fluctuations by particles is expressed as a function of the Damköhler number, which is defined as the ratio of the turbulence large-eddy turnover time to the fluid thermal relaxation time. Direct numerical simulations are conducted for two-way thermal coupling between the fluid temperature field and point particles in homogeneous isotropic turbulence. The simulation results are shown to agree well with the theoretical predictions.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献