Two-dimensional turbulence on a sphere

Author:

Lindborg ErikORCID,Nordmark Arne

Abstract

Following Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) we undertake a spectral analysis of a non-divergent flow on a sphere. It is shown that the spherical harmonic energy spectrum is invariant under rotations of the polar axis of the spherical harmonic system and argued that a constraint of isotropy would not simplify the analysis but only exclude low-order modes. The spectral energy equation is derived and it is shown that the viscous term has a slightly different form than given in previous studies. The relations involving energy transfer within a triad of modes, which Fjørtoft (Tellus, vol. 5, 1953, pp. 225–230) derived under the condition that energy transfer is restricted to three modes, are derived under general conditions. These relations show that there are two types of interaction within a triad. The first type is where the middle mode acts as a source for the two other modes and the second type is where it acts as a sink. The inequality indicating cascade directions which was derived by Gkioulekas & Tung (J. Fluid Mech., vol. 576, 2007, pp. 173–189) in Fourier space under the assumptions of narrow band forcing and stationarity is derived in spherical harmonic space under the assumption of dominance of first type interactions. The double cascade theory of Kraichnan (Phys. Fluids, vol. 10, 1967, pp. 1417–1423) is discussed in the light of the derived equations and it is hypothesised that in flows with limited scale separation the two cascades may, to a large extent, be produced by the same triad interactions. Finally, we conclude that the spherical geometry is the optimal test ground for exploration of two-dimensional turbulence by means of simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3