Multi-scale dynamics of Kelvin–Helmholtz instabilities. Part 2. Energy dissipation rates, evolutions and statistics

Author:

Fritts David C.ORCID,Wang L.ORCID,Thorpe S.A.ORCID,Lund T.S.ORCID

Abstract

Fritts et al. (J. Fluid Mech., vol. xx, 2022, xx) describe a direct numerical simulation of interacting Kelvin–Helmholtz instability (KHI) billows arising due to initial billow cores that exhibit variable phases along their axes. Such KHI exhibit strong ‘tube and knot’ dynamics identified in early laboratory studies by Thorpe (Geophys. Astrophys. Fluid Dyn., vol. 34, 1985, pp. 175–199). Thorpe (Q.J.R. Meteorol. Soc., vol. 128, 2002, pp. 1529–1542) noted that these dynamics may be prevalent in the atmosphere, and they were recently identified in atmospheric observations at high altitudes. Tube and knot dynamics were found by Fritts et al. (J. Fluid. Mech., 2022) to drive stronger and faster turbulence transitions than secondary instabilities of individual KH billows. Results presented here reveal that KHI tube and knot dynamics also yield energy dissipation rates $\sim$ 2–4 times larger as turbulence arises and that remain $\sim$ 2–3 times larger to later stages of the flow evolution, compared with those of secondary convective instabilities (CI) and secondary KHI accompanying KH billows without tube and knot influences. Elevated energy dissipation rates occur due to turbulence transitions by tube and knot dynamics arising on much larger scales than secondary CI and KHI where initial KH billows are misaligned. Tube and knot dynamics also excite large-scale Kelvin ‘twist waves’ that cause vortex tube and billow core fragmentation, more energetic cascades of similar interactions to smaller scales and account for the strongest energy dissipation events accompanying such KH billow evolutions.

Funder

National Science Foundation

Air Force Office of Scientific Research

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3