Near-wake dynamics of a vertical-axis turbine

Author:

Strom Benjamin,Polagye Brian,Brunton Steven L.ORCID

Abstract

Cross-flow, or vertical-axis, turbines are a promising technology for capturing kinetic energy in wind or flowing water and their inherently unsteady fluid mechanics present unique opportunities for control optimization of individual rotors or arrays. To explore the potential for beneficial interactions between turbines in an array, as well as to characterize important cycle-to-cycle variations, coherent structures in the wake of a single two-bladed cross-flow turbine are examined using planar stereo particle image velocimetry in a water channel experiment. There are three main objectives in the present work. First, the mean wake structure of this high chord-to-radius ratio rotor is described, compared with previous studies, and a simple explanation for observed wake deflection is presented. Second, the unsteady flow is then analysed via the triple decomposition, with the periodic component extracted using a combination of traditional techniques and a novel implementation of the optimized dynamic mode decomposition. The latter method is shown to outperform conditional averaging and Fourier methods, as well as uncover frequencies suggesting a transition to bluff-body shedding in the far wake. Third, vorticity and finite-time Lyapunov exponents are then employed to further analyse the oscillatory wake component. Vortex streets on both sides of the wake are identified, and their formation mechanisms and effects on the mean flow are discussed. Strong axial (vertical) flow is observed in vortical structures shed on the retreating side of the rotor where the blades travel downstream. Time-resolved tracking of these vortices is performed, which demonstrates that vortex trajectories have significant rotation-to-rotation variation within one diameter downstream. This variability suggests it would be challenging to harness or avoid such structures at greater downstream distances.

Funder

Army Research Office

U.S. Department of Energy

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Reference96 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3