Abstract
In this paper, the kinetic energy cascade in stably stratified open-channel flows is investigated. A mathematical framework to incorporate vertical scales into the conventional kinetic energy spectrum and its budget is introduced. This framework defines kinetic energy density in horizontal spectral and vertical scale space. The energy cascade is studied by analysing the evolution of kinetic energy density. It is shown that energetic streamwise scales ($\lambda _x$) become larger with increasing vertical scale. For the strongest stratification, for which the turbulence becomes intermittent, the energetic streamwise scales are suppressed, and energy density resides in $\lambda _x$ of the size of the domain. It is shown that, in an unstratified case, vertical scales of the size comparable to the height of the logarithmic layer connect viscous regions to the outer layer. By contrast, in stratified cases, such a connection is not observed. Moreover, it is shown that nonlinear transfer for streamwise scales is dominated by in-plane triad interactions and inter-plane transfer is more active in transferring energy density among small vertical scales of the size comparable to the height of viscous sublayer. The vertical scales of size comparable to the height of the viscous sublayer and buffer layer are the most active scales in the viscous term and the production term in the energy density budget, respectively.
Funder
Natural Sciences and Engineering Research Council of Canada
Compute Canada
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献