On the applicability of Taylor's hypothesis, including small sampling velocities

Author:

Pécseli Hans L.ORCID,Trulsen Jan K.ORCID

Abstract

Taylor's hypothesis, or the frozen turbulence approximation, can be used to estimate also the specific energy dissipation rate $\epsilon$ by comparing experimental results with the Kolmogorov–Obukhov expression. The hypothesis assumes that a frequency detected by an instrument moving with a constant large velocity $V$ can be related to a wavenumber by $\omega = k V$ . It is, however, not obvious how large the translational velocity has to be in order to make the hypothesis valid, or at least applicable with some acceptable uncertainty. Using the space–time-varying structure function for homogeneous and isotropic conditions, this question is addressed in the present study with emphasis on small velocities $V$ . The structure function is obtained using results from numerical solutions of the Navier–Stokes equation. Particular attention is given to the $V$ variation of the estimated specific energy dissipation, $\epsilon _{est}$ , compared with the actual value, $\epsilon$ , used in the numerical calculations. In contrast to previous studies, the results emphasize velocities $V$ less than or comparable to the one-component root-mean-square velocity, $u_{rms}$ . We find that $\epsilon$ can be determined to an acceptable accuracy for $V \geq 0.3\,u_{rms}$ . A simple analytical model is suggested to explain the main features of the observations, both Eulerian and Lagrangian. The model assumes that the observed time variations are solely due to eddies moving past the observer, thus ignoring eddy deformation and intermittency effects. In spite of these simplifications, the analysis accounts for most of the numerical results when also eddy-size-dependent velocities are accounted for.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3