Mesoscopic models for electrohydrodynamic interactions of polyelectrolytes

Author:

Kopelevich Dmitry I.ORCID,He ShujunORCID,Montes Ryan J.ORCID,Butler Jason E.ORCID

Abstract

Two mean-field models for polyelectrolytes in simultaneous electric field and pressure-driven flow field were developed and compared. The models predict migration perpendicular to the anti-parallel or parallel fields, where the migration is caused by electrohydrodynamic interactions calculated using either a short- or long-range approximation. Inputs for the mean-field models were determined from Brownian dynamics simulations in a simple shear flow. Both models qualitatively reproduce experimental observations of DNA focusing as reported in previous publications. Specifically, it is observed that combination of the shear and electric fields leads to polyelectrolyte motion in the direction transverse to the flow and electric field direction, which in turn leads to concentration of the polyelectrolyte in the centre of a microfluidic channel. Furthermore, both models predict that there is an optimal strength of electric field that leads to the narrowest distribution profile of the polyelectrolyte in the centre of the channel. The analysis suggests that this is due to dispersion induced by the electrohydrodynamic interactions. However, quantitative disagreement between the model predictions and the experimental data indicates that further progress in the model development is needed.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3