Efficient thrust enhancement by modified pitching motion

Author:

Muhammad ZakaORCID,Alam Md. MahbubORCID,Noack Bernd R.ORCID

Abstract

Thrust and/or efficiency of a pitching foil (mimicking a tail of swimming fish) can be enhanced by tweaking the pitching waveform. The literature, however, show that non-sinusoidal pitching waveforms can enhance either thrust or efficiency but not both simultaneously. With the knowledge and inspiration from nature, we devised and implemented a novel asymmetrical sinusoidal pitching motion that is a combination of two sinusoidal motions having periods T1 and T2 for the forward and retract strokes, respectively. The motion is represented by period ratio $\mathrm{\mathbb{T}} = {T_1}/T$ , where T = (T1 + T2)/2, with $\mathrm{\mathbb{T}} > 1.00$ giving the forward strokes (from equilibrium to extreme position) slower than the retract strokes (from extreme to equilibrium position) and vice versa. The novel pitching motion enhances both thrust and efficiency for $\mathrm{\mathbb{T}} > 1.00$ . The enhancement results from the resonance between the shear-layer roll up and the increased speed of the foil. Four swimming regimes, namely normal swimming, undesirable, floating and ideal are discussed, based on instantaneous thrust and power. The results from the novel pitching motion display similarities with those from fish locomotion (e.g. fast start, steady swimming and braking). The $\mathrm{\mathbb{T}} > 1.00$ motion in the faster stroke has the same characteristics and results as the fast start of prey to escape from a predator while $\mathrm{\mathbb{T}} < 1.00$ imitates braking locomotion. While $\mathrm{\mathbb{T}} < 1.00$ enhances the wake deflection at high amplitude-based Strouhal numbers (StA = fA/U, where f and A are the frequency and peak-to-peak amplitude of the pitching, respectively, and U is the freestream velocity), $\mathrm{\mathbb{T}} > 1.00$ improves the wake symmetry, suppressing the wake deflection. The wake characteristics including wake width, jet velocity and vortex structures are presented and connected with $S{t_d}( = fd/{U_\infty })$ , ${A^{\ast}}( = A/d)$ and $\mathrm{\mathbb{T}}$ , where d is the maximum thickness of the foil.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3