Abstract
The initial flow past an impulsively started translating circular cylinder is asymptotically analysed using a Brinkman penalization method on the Navier–Stokes equations. The asymptotic solution obtained shows that the tangential and normal slip velocities on the cylinder surface are of the order of
$1/\sqrt {\lambda }$
and
$1/\lambda$
, respectively, within the second approximation of the present asymptotic analysis, where
$\lambda$
is the penalization parameter. This result agrees with the estimation of Carbou & Fabrie (Adv. Diff. Equ., vol. 8, 2003, pp. 1453–1480). Based on the asymptotic solution, the influence of the penalization parameter
$\lambda$
is discussed on the drag coefficient that is calculated using the adopted three formulae. It can then be found that the drag coefficient calculated from the integration of the penalization term exhibits a half-value of the results of Bar-Lev & Yang (J. Fluid Mech., vol. 72, 1975, pp. 625–647) as
$\lambda \to \infty$
.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献