AC electrohydrodynamic Landau–Squire flows around a conducting nanotip

Author:

Chen Jyun-An,Miloh Touvia,Kaveevivitchai Watchareeya,Wei Hsien-HungORCID

Abstract

Utilizing the joint singular natures of electric field and hydrodynamic flow around a sharp nanotip, we report new electrohydrodynamic Landau–Squire-type flows under the actions of alternating current (AC) electric fields, markedly different from the classical Landau–Squire flow generated by pump discharge using nanotubes or nanopores. Making use of the locally diverging electric field prevailing near the conical tip, we are able to generate a diversity of AC electrohydrodynamic flows with the signature of a 1/r point-force-like decay at distance r from the tip. Specifically, we find AC electrothermal jet and Faradaic streaming out of the tip at applied frequencies in the MHz and 102 Hz regimes, respectively. Yet at intermediate frequencies of 1–100 kHz, the jet flow can be reversed to an AC electro-osmotic impinging flow. The characteristics of these AC jet flows are very distinct from AC flows over planar electrodes. For the AC electrothermal jet, we observe experimentally that its speed varies with the driving voltage V as V3, in contrast to the common V4 dependence according to the classical theory reported by Ramos et al. (J. Phys. D: Appl. Phys, vol. 31, 1998, pp. 2338–2353). Additionally, the flow speed does not increase with the solution conductivity as commonly thought. These experimental findings can be rationalized by means of local Joule heating and double layer charging mechanisms in such a way that the nanotip actually becomes a local hotspot charged with heated tangential currents. The measured speed of the AC Faradaic streaming is found to vary as V3/2 logV, which can be interpreted by the local Faradaic leakage in balance with tangential conduction. These unusual flow characteristics signify that a conical electrode geometry may fundamentally alter the features of AC electrohydrodynamic flows. Such peculiar electrohydrodynamic flows may also provide new avenues for expediting molecular sensing or sample transport in prevalent electrochemical or microfluidic applications.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3