Lubricated rolling over a pool

Author:

Rahmani HatefORCID,Stoeber BorisORCID,Balmforth Neil J.ORCID,Green Sheldon I.ORCID

Abstract

Experiments are conducted to explore the rolling of a cylinder over a pool of viscous fluid. The speed, width and loading of the cylinder are varied along with the initial depth and length of the viscous pool. Depending on the conditions, the cylinder will either ride on a lubrication film or remain in solid contact with the underlying substrate. For the former situation, a lubrication theory is presented that describes the pressure underneath the cylinder and the thickness of the film. The theory approximates the flow by the one-dimensional Reynolds equation with the addition of one term, with an adjustable parameter, to account for the flux of fluid to the cylinder sides. Once this parameter is calibrated against experiment, the theory predicts peak lubrication pressures, gap sizes and film thicknesses to within approximately ten per cent. For lubricated rolling, the film splits evenly between the cylinder and substrate downstream of the nip. The printer's instability arises during the splitting process, patterning the residual fluid films on the substrate and cylinder. If the pool length is less than the cylinder circumference, the fluid adhering to the cylinder is rotated back into contact with the substrate, and when there is sufficient adhered fluid a lubrication film forms that can again be modelled by the theory. Conversely, if there is insufficient adhered fluid, no contiguous lubrication film is formed; instead, the pattern from the printer's instability ‘prints’ from the cylinder to the substrate.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Carrydown of liquid friction modifier;Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit;2022-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3