Abstract
A study of small-amplitude shape oscillations of a viscous compound droplet suspended in a viscous host fluid is performed. A generalized eigenvalue problem is formulated and is solved by using the spectral method. The effects of the relevant non-dimensional parameters are examined for three cases, i.e. a liquid shell in a vacuum and a compound droplet in a vacuum or in a host fluid. The fundamental mode
$l=2$
is found to be dominant. There exist two oscillatory modes: the in phase and the out of phase. In most situations, the interfaces oscillate in phase rather than out of phase. For the in-phase mode, in the absence of the host, as the viscosity of the core or the shell increases, the damping rate increases whereas the oscillation frequency decreases; when the viscosity exceeds a critical value, the mode becomes aperiodic with the damping rate bifurcating into two branches. In addition, when the tension of the inner interface becomes smaller than some value, the in-phase mode turns aperiodic. In the presence of the unbounded host fluid, there exists a continuous spectrum. The viscosity of the host may decrease or increase the damping rate of the in-phase mode. The mechanism behind it is discussed. The density contrasts between fluids affect oscillations of the droplet in a complicated way. Particularly, sufficiently large densities of the core or the host lead to the disappearance of the out-of-phase mode. The thin shell approximation predicts well the oscillation of the compound droplet when the shell is thin.
Funder
National Natural Science Foundation of China
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献