Damped shape oscillations of a viscous compound droplet suspended in a viscous host fluid

Author:

Li FangORCID,Yin Xie-Yuan,Yin Xie-Zhen

Abstract

A study of small-amplitude shape oscillations of a viscous compound droplet suspended in a viscous host fluid is performed. A generalized eigenvalue problem is formulated and is solved by using the spectral method. The effects of the relevant non-dimensional parameters are examined for three cases, i.e. a liquid shell in a vacuum and a compound droplet in a vacuum or in a host fluid. The fundamental mode $l=2$ is found to be dominant. There exist two oscillatory modes: the in phase and the out of phase. In most situations, the interfaces oscillate in phase rather than out of phase. For the in-phase mode, in the absence of the host, as the viscosity of the core or the shell increases, the damping rate increases whereas the oscillation frequency decreases; when the viscosity exceeds a critical value, the mode becomes aperiodic with the damping rate bifurcating into two branches. In addition, when the tension of the inner interface becomes smaller than some value, the in-phase mode turns aperiodic. In the presence of the unbounded host fluid, there exists a continuous spectrum. The viscosity of the host may decrease or increase the damping rate of the in-phase mode. The mechanism behind it is discussed. The density contrasts between fluids affect oscillations of the droplet in a complicated way. Particularly, sufficiently large densities of the core or the host lead to the disappearance of the out-of-phase mode. The thin shell approximation predicts well the oscillation of the compound droplet when the shell is thin.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3