Subcritical and supercritical bifurcations in axisymmetric viscoelastic pipe flows

Author:

Wan Dongdong,Sun Guangrui,Zhang MengqiORCID

Abstract

Axisymmetric viscoelastic pipe flow of Oldroyd-B fluids has been recently found to be linearly unstable by Garg et al. (Phys. Rev. Lett., vol. 121, 2018, 024502). From a nonlinear point of view, this means that the flow can transition to turbulence supercritically, in contrast to the subcritical Newtonian pipe flows. Experimental evidence of subcritical and supercritical bifurcations of viscoelastic pipe flows have been reported, but these nonlinear phenomena have not been examined theoretically. In this work, we study the weakly nonlinear stability of this flow by performing a multiple-scale expansion of the disturbance around linear critical conditions. The perturbed parameter is the Reynolds number with the others being unperturbed. A third-order Ginzburg–Landau equation is derived with its coefficient indicating the bifurcation type of the flow. After exploring a large parameter space, we found that polymer concentration plays an important role: at high polymer concentrations (or small solvent-to-solution viscosity ratio $\beta \lessapprox 0.785$ ), the nonlinearity stabilizes the flow, indicating that the flow will bifurcate supercritically, while at low polymer concentrations ( $\beta \gtrapprox 0.785$ ), the flow bifurcation is subcritical. The results agree qualitatively with experimental observations where critical $\beta \approx 0.855$ . The pipe flow of upper convected Maxwell fluids can be linearly unstable and its bifurcation type is also supercritical. At a fixed value of $\beta$ , the Landau coefficient scales with the inverse of the Weissenberg number ( $Wi$ ) when $Wi$ is sufficiently large. The present analysis provides a theoretical understanding of the recent studies on the supercritical and subcritical routes to the elasto-inertial turbulence in viscoelastic pipe flows.

Funder

Ministry of Education - Singapore

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3