Abstract
Recent studies on viscous streaming flows in two dimensions have elucidated the impact of body curvature variations on resulting flow topology and dynamics, with opportunities for microfluidic applications. Following that, we present here a three-dimensional characterization of streaming flows as functions of changes in body geometry and topology, starting from the well-known case of a sphere to progressively arrive at toroidal shapes. We leverage direct numerical simulations and dynamical systems theory to systematically analyse the reorganization of streaming flows into a dynamically rich set of regimes, the origins of which are explained using bifurcation theory.
Funder
Division of Chemical, Bioengineering, Environmental, and Transport Systems
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献