Experimental validation of inviscid linear stability theory applied to an axisymmetric jet

Author:

Gareev L.R.ORCID,Zayko J.S.ORCID,Chicherina A.D.ORCID,Trifonov V.V.ORCID,Reshmin A.I.ORCID,Vedeneev V.V.ORCID

Abstract

We study the development of perturbations in a submerged air jet with a round cross-section and a long laminar region (five jet diameters) at a Reynolds number of 5400 by both inviscid linear stability theory and experiments. The theoretical analysis shows that there are two modes of growing axisymmetric perturbations, which are generated by three generalized inflection points of the jet's velocity profile. To validate the results of linear stability theory, we conduct experiments with controlled axisymmetric perturbations to the jet. The characteristics of growing waves are obtained by visualization, thermoanemometer measurements and correlation analysis. Experimentally measured wavelengths, growth rates and spatial distributions of velocity fluctuations for both growing modes are in good agreement with theoretical calculations. Therefore, it is demonstrated that small perturbations to the laminar jet closely follow the predictions of inviscid linear stability theory.

Funder

Russian Science Foundation

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference46 articles.

1. Formation of free round jets with long laminar regions at large Reynolds numbers

2. Transient growth of secondary instabilities in parallel wakes: Anti lift-up mechanism and hyperbolic instability

3. Pfenniger, W. 1961 Transition in the inlet length of tubes at high Reynolds numbers. In Boundary Layer and Flow Control (ed. G. Lachman), pp. 970–980. Pergamon.

4. An experimental investigation of the stability of Poiseuille flow;Kozlov;Izv. Akad. Nauk SSSR, Tech. Sci.,1981

5. Optimal eddy viscosity for resolvent-based models of coherent structures in turbulent jets

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3