On wedge-slamming pressures

Author:

Jain UtkarshORCID,Novaković Vladimir,Bogaert Hannes,van der Meer DevarajORCID

Abstract

The water entry of a wedge has become a model test in marine and naval engineering research. Wagner theory, originating in 1932, predicts impact pressures, and accounts for contributions to the total pressure arising from various flow domains in the vicinity of the wetting region on the wedge. Here we study the slamming pressures on a wedge and a cone, impacting on water keeping a constant, well-controlled velocity, throughout the process, using high-fidelity sensors. Pressures at two locations on the impactor are measured during and after impact. Pressure time series from the two impactors are discussed using inertial pressure and time scales. The non-dimensionalised pressure time series are compared with sensor-integrated averaged composite Wagner solutions, Logvinovich solution (Hydrodynamics of Flows with Free Boundaries. Naukova Dumka, 1969, 4.7), modified Logvinovich solution, and generalised Wagner models. In addition, we provide an independent experimental justification of approximations made in the literature in extending the Wagner model to three dimensions. The second part of the paper deals with pre-impact air cushioning – an important concern since it is responsible for determining the thickness of the air layer trapped upon impact. Using a custom-made technique we measure the air–water interface dynamics as it responds to the build up of pressure in the air layer intervening in between the impactor and the free surface. We show both experimentally and using two-fluid boundary integral simulations, that the pre-impact deflection of the interface due to air-cushioning is fully described by potential flow.

Funder

Stichting voor de Technische Wetenschappen

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3