Establishing a data-based scattering kernel model for gas–solid interaction by molecular dynamics simulation

Author:

Wang Zijing,Song Chengqian,Qin FenghuaORCID,Luo XishengORCID

Abstract

Scattering kernel models for gas–solid interaction are crucial for rarefied gas flows and microscale flows. However, most existing models depend on certain accommodation coefficients (ACs). We propose here to construct a data-based model using molecular dynamics (MD) simulation and machine learning. The gas–solid interaction is first modelled by 100 000 MD simulations of a single gas molecule reflecting on the wall surface, which is fulfilled by GPU parallel technology. The results showed a correlation of the reflection velocity with the incidence velocity in the same direction, and also revealed correlations that may exist in different directions, which are neglected by the traditional gas–solid interaction model. Inspired by the sophisticated Cercignani–Lampis–Lord (CLL) model, two improved scattering kernels were constructed to better reproduce the probability density of velocity determined from MD simulation. The first one adopts variable ACs which depend on the incidence velocity and the second one combines three CLL-like kernels. All the parameters in the improved kernels are automatically chosen by the machine learning method. Compared with the numerical experiments of a molecular beam, the reconstructed scattering kernels are basically consistent with the MD results.

Funder

National Natural Science Foundation of China

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3