Abstract
We study the stability of unsteady particle-laden flows in long, tilted water columns in batch settling mode, where the quasi-steady assumption of base flow no longer holds for the fast settling of particles. For this purpose, we introduce a settling time scale in the momentum and transport equations to solve the unsteady base flow, and utilise non-modal analysis to examine the stability of the disturbance flow field. The base flow increases in magnitude as the settling speed decreases and attains its maximum value when the settling speed becomes infinitesimal. The time evolution of the disturbance flow energy experiences an algebraic growth caused by the lift-up mechanism of the wall-normal disturbance, followed by an exponential growth owing to the shear instability of the base flow. The streamwise and spanwise wavenumbers corresponding to the peak energy gain are identified for both stages. In particular, the flow instability is enhanced as the Prandtl number increases, which is attributed to the sharpening of the particle-laden interface. On the other hand, the flow instability is suppressed by the increase in settling speed, because less disturbance energy can be extracted from the base flow. There exists an optimal tilted angle for efficient sedimentation, where the particle-laden flow is relatively stable and is accompanied by a smaller energy gain of the disturbance.
Funder
Ministry of Education (MOE) Higher Education Sprout Project in Taiwan
MOST Thermal Science and Fluid Dynamic Program
National Taiwan University career development project
Taiwan Ministry of Science and Technology (MOST) Civil and Hydraulic Engineering Program
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献