Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit

Author:

Ghosh UddiptaORCID,Mukherjee Siddhartha,Chakraborty SumanORCID

Abstract

The electrophoretic motion of a non-uniformly charged particle in an Oldroyd-B fluid is analysed here in the limit of thin electrical double layers. To this end, we analytically derive expressions for the modified Smoluchowski slip velocity around the particle, carrying weak but otherwise arbitrary surface charge. Our analysis reveals that the modified Smoluchowski slip around a particle differs significantly in a viscoelastic medium as compared with Newtonian fluids. The flow field thus derived is applied to two special cases of non-uniformly charged particles to obtain a closed-form expression for their electrophoretic translational and rotational velocities. We show that the particle's velocity strongly depends on its size in a viscoelastic medium, even for weakly charged surfaces, which is in stark contrast to the well-established theory for Newtonian fluids for weakly charged particles with negligible surface conduction. We further demonstrate that the presence of non-uniform surface charge enhances the influence of the medium's viscoelasticity on the particle's translational as well as angular velocity and this effect strongly depends on the nature of surface charge distribution. Such a physical paradigm, which leads to a breaking of fore–aft symmetry that is unique to complex fluids despite operating in the regime of creeping flows. Our study provides new theoretical framework for understanding electrophoresis of charged entities (such as DNA or active matter) in complex fluids, including biologically relevant fluidic media.

Funder

Department of Science and Technology, Ministry of Science and Technology, India

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3