Effect of hydrodynamic slip on the rotational dynamics of a thin Brownian platelet in shear flow

Author:

Kamal CatherineORCID,Gravelle SimonORCID,Botto LorenzoORCID

Abstract

The classical theory by Jeffery predicts that, in the absence of Brownian fluctuations, a thin rigid platelet rotates continuously in a shear flow, performing periodic orbits. However, a stable orientation is possible if the surface of the platelet displays a hydrodynamic slip length $\lambda$ comparable to or larger than the thickness of the platelet. In this article, by solving the Fokker–Plank equation for the orientation distribution function and corroborating the analysis with boundary integral simulations, we quantify a threshold Péclet number, ${Pe}_{c}$ , above which such alignment occurs. We found that for ${Pe}$ smaller than ${Pe}_{c}$ , but larger than a second threshold, a regime emerges where Brownian fluctuations are strong enough to break the platelet's alignment and induce rotations, but with a period of rotation that depends on the value of $\lambda$ . For ${Pe}$ below this second threshold, slip has a negligible effect on the orientational dynamics. We use these thresholds to classify the dynamics of graphene-like nanoplatelets for realistic values of $\lambda$ and apply our results to the quantification of the orientational contribution to the effective viscosity of a dilute suspension of nanoplatelets with slip. We find a non-monotonic variation of this term, with a minimum occurring when the slip length is comparable to the thickness of the particle.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3