Spreading or contraction of viscous drops between plates: single, multiple or annular drops

Author:

Moffatt H.K.ORCID,Guest Howard,Huppert Herbert E.ORCID

Abstract

The behaviour of a viscous drop squeezed between two horizontal planes (a squeezed Hele-Shaw cell) is treated by both theory and experiment. When the squeezing force $F$ is constant and surface tension is neglected, the theory predicts ultimate growth of the radius $a\sim t^{1/8}$ with time $t$. This theory is first reviewed and found to be in excellent agreement with experiment. Surface tension at the drop boundary reduces the interior pressure, and this effect is included in the analysis, although it is negligibly small in the squeezing experiments. An initially elliptic drop tends to become circular as $t$ increases. More generally, the circular evolution is found to be stable under small perturbations. If, on the other hand, the force is reversed ($F<0$), so that the plates are drawn apart (the ‘contraction’, or ‘lifting plate’, problem), the boundary of the drop is subject to a fingering instability on a scale determined by surface tension. The effect of a trapped air bubble at the centre of the drop is then considered. The annular evolution of the drop under constant squeezing is still found to follow a ‘one-eighth’ power law, but this is unstable, the instability originating at the boundary of the air bubble, i.e. the inner boundary of the annulus. The air bubble is realised experimentally in two ways: first by simply starting with the drop in the form of an annulus, as nearly circular as possible; and second by forcing four initially separate drops to expand and merge, a process that involves the resolution of ‘contact singularities’ by surface tension. If the plates are drawn apart, the evolution is still subject to the fingering instability driven from the outer boundary of the annulus. This instability is realised experimentally by levering the plates apart at one corner: fingering develops at the outer boundary and spreads rapidly to the interior as the levering is slowly increased. At a later stage, before ultimate rupture of the film and complete separation of the plates, fingering spreads also from the boundary of any interior trapped air bubble, and small cavitation bubbles appear in the very low-pressure region, far from the point of leverage. This exotic behaviour is discussed in the light of the foregoing theoretical analysis.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3