Investigation of unsteady secondary flows and large-scale turbulence in heterogeneous turbulent boundary layers

Author:

Wangsawijaya D.D.ORCID,Hutchins N.ORCID

Abstract

Following the findings by Wangsawijaya et al. (J. Fluid Mech., vol. 894, 2020, A7), we re-examine the turbulent boundary layers developing over surfaces with spanwise heterogeneous roughness of various roughness half-wavelengths $0.32 \leq S/\bar {\delta } \leq 3.63$, where $S$ is the width of the roughness strips and $\bar {\delta }$ is the spanwise-averaged boundary-layer thickness. The heterogeneous cases induce counter-rotating secondary flows, and these are compared with the large-scale turbulent structures that occur naturally over the smooth wall. Both appear as meandering elongated high- and low-momentum streaks in the instantaneous flow field. Results based on the triple decomposed velocity fluctuations suggest that the secondary flows are spanwise-locked turbulent structures, with $S/\bar {\delta }$ governing the strength of the turbulent structures and the efficacy of the surface in locking the structures in place (most effective when $S/\bar {\delta } \approx 1$). In terms of unsteadiness, we find additional evidence from conditional averages of the fluctuating velocity fields showing that the secondary flows exhibit maximum unsteadiness (or meandering) when $S/\bar {\delta } \approx 1$. The conditional averages of both spanwise heterogeneous and smooth-wall cases result in structures that are reminiscent of those proposed for the streak-vortex instability model for the inner cycle of wall-bounded turbulence. However, in this case these structures are larger and do not necessarily share the same formation mechanism with the inner cycle. Secondary flows and large-scale structures coexist in the limits where either $S/\bar {\delta } \gg 1$ or $S/\bar {\delta } \ll 1$, where the secondary flows scale on $\delta$ or $S$, respectively. When $S/\bar {\delta } \gg 1$, the secondary flows are locked about the roughness transition, while relatively unaltered large-scale structures occur further from the transition. In the case where $S/\bar {\delta } \ll 1$, $S$-scaled secondary flows are confined close to the surface, coexisting with unaltered larger-scale turbulent structures that penetrate much deeper into the layer.

Funder

Office of Naval Research

Australian Research Council

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3