Effect of wall temperature on the kinetic energy transfer in a hypersonic turbulent boundary layer

Author:

Xu DehaoORCID,Wang JianchunORCID,Wan Minping,Yu ChangpingORCID,Li Xinliang,Chen Shiyi

Abstract

The effect of wall temperature on the transfer of kinetic energy in a hypersonic turbulent boundary layer for different Mach numbers and wall temperature ratios is studied by direct numerical simulation. A cold wall temperature can enhance the compressibility effect in the near-wall region through increasing the temperature gradient and wall heat flux. It is shown that the cold wall temperature enhances the local reverse transfer of kinetic energy from small scales to large scales, and suppresses the local direct transfer of kinetic energy from large scales to small scales. The average filtered spatial convection and average filtered viscous dissipation are dominant in the near-wall region, while the average subgrid-scale flux of kinetic energy achieves its peak value in the buffer layer. It is found that the wall can suppress the inter-scale transfer of kinetic energy, especially for the situation of a cold wall. A strong local reverse transfer of fluctuating kinetic energy is identified in the buffer layer in the inertial range. Helmholtz decomposition is applied to analyse the compressibility effect on the subgrid-scale flux of kinetic energy. A strong transfer of the solenoidal component of fluctuating kinetic energy is identified in the buffer layer, while a significant transfer of the dilatational component of fluctuating kinetic energy is observed in the near-wall region. It is also shown that compression motions have a major contribution to the direct transfer of fluctuating kinetic energy, while expansion motions play a marked role in the reverse transfer of fluctuating kinetic energy.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

National Natural Science Foundation of China

Guangdong Science and Technology Department

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3