Construction and evaluation of event graphs

Author:

GLAVAŠ GORAN,ŠNAJDER JANORCID

Abstract

AbstractEvents play an important role in natural language processing and information retrieval due to numerous event-oriented texts and information needs. Many natural language processing and information retrieval applications could benefit from a structured event-oriented document representation. In this paper, we proposeevent graphsas a novel way of structuring event-based information from text. Nodes in event graphs represent the individual mentions of events, whereas edges represent the temporal and coreference relations between mentions. Contrary to previous natural language processing research, which has mainly focused on individual event extraction tasks, we describe a complete end-to-end system for event graph extraction from text. Our system is a three-stage pipeline that performs anchor extraction, argument extraction, and relation extraction (temporal relation extraction and event coreference resolution), each at a performance level comparable with the state of the art. We presentEvExtra, a large newspaper corpus annotated with event mentions and event graphs, on which we train and evaluate our models. To measure the overall quality of the constructed event graphs, we propose two metrics based on the tensor product between automatically and manually constructed graphs. Finally, we evaluate the overall quality of event graphs with the proposed evaluation metrics and perform a headroom analysis of the system.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Risk identification and management through knowledge Association: A financial event evolution knowledge graph approach;Expert Systems with Applications;2024-10

2. UG-schematic Annotation for Event Nominals: A Case Study in Mandarin Chinese;Computational Linguistics;2023-12-21

3. Script Event Prediction Based on Causal Generalization Learning;2023 IEEE 35th International Conference on Tools with Artificial Intelligence (ICTAI);2023-11-06

4. EventKGE: Event knowledge graph embedding with event causal transfer;Knowledge-Based Systems;2023-10

5. tieval: An Evaluation Framework for Temporal Information Extraction Systems;Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval;2023-07-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3