Using the crowd for readability prediction

Author:

DE CLERCQ ORPHÉE,HOSTE VÉRONIQUE,DESMET BART,VAN OOSTEN PHILIP,DE COCK MARTINE,MACKEN LIEVE

Abstract

AbstractWhile human annotation is crucial for many natural language processing tasks, it is often very expensive and time-consuming. Inspired by previous work on crowdsourcing, we investigate the viability of using non-expert labels instead of gold standard annotations from experts for a machine learning approach to automatic readability prediction. In order to do so, we evaluate two different methodologies to assess the readability of a wide variety of text material: A more traditional setup in which expert readers make readability judgments and a crowdsourcing setup for users who are not necessarily experts. To this purpose two assessment tools were implemented: a tool where expert readers can rank a batch of texts based on readability, and a lightweight crowdsourcing tool, which invites users to provide pairwise comparisons. To validate this approach, readability assessments for a corpus of written Dutch generic texts were gathered. By collecting multiple assessments per text, we explicitly wanted to level out readers' background knowledge and attitude. Our findings show that the assessments collected through both methodologies are highly consistent and that crowdsourcing is a viable alternative to expert labeling. This is a good news as crowdsourcing is more lightweight to use and can have access to a much wider audience of potential annotators. By performing a set of basic machine learning experiments using a feature set that mainly encodes basic lexical and morpho-syntactic information, we further illustrate how the collected data can be used to perform text comparisons or to assign an absolute readability score to an individual text. We do not focus on optimising the algorithms to achieve the best possible results for the learning tasks, but carry them out to illustrate the various possibilities of our data sets. The results on different data sets, however, show that our system outperforms the readability formulas and a baseline language modelling approach. We conclude that readability assessment by comparing texts is a polyvalent methodology, which can be adapted to specific domains and target audiences if required.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference48 articles.

1. The linguistic assumptions underlying readability formulae

2. The cloze procedure: its validity and utility;Rankin;Eighth Yearbook of the National Reading Conference,1959

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3