A Semantic Scattering model for the automatic interpretation of English genitives

Author:

BADULESCU ADRIANA,MOLDOVAN DAN

Abstract

AbstractAn important problem in knowledge discovery from text is the automatic extraction of semantic relations. This paper addresses the automatic classification of thesemantic relationsexpressed by English genitives. A learning model is introduced based on the statistical analysis of the distribution of genitives' semantic relations in a corpus. The semantic and contextual features of the genitive's noun phrase constituents play a key role in the identification of the semantic relation. The algorithm was trained and tested on a corpus of approximately 20,000 sentences and achieved an f-measure of 79.80 per cent for of-genitives, far better than the 40.60 per cent obtained using a Decision Trees algorithm, the 50.55 per cent obtained using a Naive Bayes algorithm, or the 72.13 per cent obtained using a Support Vector Machines algorithm on the same corpus using the same features. The results were similar for s-genitives: 78.45 per cent using Semantic Scattering, 47.00 per cent using Decision Trees, 43.70 per cent using Naive Bayes, and 70.32 per cent using a Support Vector Machines algorithm. The results demonstrate the importance of word sense disambiguation and semantic generalization/specialization for this task. They also demonstrate that different patterns (in our case the two types of genitive constructions) encode different semantic information and should be treated differently in the sense that different models should be built for different patterns.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semantics with Assignment Variables;2021-06-24

2. Composition of semantic relations;ACM Transactions on Speech and Language Processing;2013-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3