Analyses for elucidating current question answering technology

Author:

LIGHT MARC,MANN GIDEON S.,RILOFF ELLEN,BRECK ERIC

Abstract

In this paper, we take a detailed look at the performance of components of an idealized question answering system on two different tasks: the TREC Question Answering task and a set of reading comprehension exams. We carry out three types of analysis: inherent properties of the data, feature analysis, and performance bounds. Based on these analyses we explain some of the performance results of the current generation of Q/A systems and make predictions on future work. In particular, we present four findings: (1) Q/A system performance is correlated with answer repetition; (2) relative overlap scores are more effective than absolute overlap scores; (3) equivalence classes on scoring functions can be used to quantify performance bounds; and (4) perfect answer typing still leaves a great deal of ambiguity for a Q/A system because sentences often contain several items of the same type.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exploring Semantic Similarity Measure Based on Word Embedding Representation for Arabic Passages Retrieval;Advanced Intelligent Systems for Sustainable Development (AI2SD’2020);2022

2. An Advanced Quick-Answering System Intended for the e-Government Service in the Republic of Serbia;Acta Polytechnica Hungarica;2019-07-01

3. Bullseye;Proceedings of the Australasian Computer Science Week Multiconference;2017-01-31

4. User motivations for asking questions in online Q & A services;Journal of the Association for Information Science and Technology;2015-03-27

5. Enhancing passage retrieval in log files by query expansion based on explicit and pseudo relevance feedback;Computers in Industry;2014-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3