Cluster-based ensemble learning model for improving sentiment classification of Arabic documents

Author:

Al Mahmoud Rana Husni,Hammo Bassam H.ORCID,Faris Hossam

Abstract

AbstractThis article reports on designing and implementing a multiclass sentiment classification approach to handle the imbalanced class distribution of Arabic documents. The proposed approach, sentiment classification of Arabic documents (SCArD), combines the advantages of a clustering-based undersampling (CBUS) method and an ensemble learning model to aid machine learning (ML) classifiers in building accurate models against highly imbalanced datasets. The CBUS method applies two standard clustering algorithms:K-means and expectation–maximization, to balance the ratio between the major and the minor classes by decreasing the number of the major class instances and maintaining the number of the minor class instances at the cluster level. The merits of the proposed approach are that it does not remove the majority class instances from the dataset nor injects the dataset with artificial minority class instances. The resulting balanced datasets are used to train two ML classifiers, random forest and updateable Naïve Bayes, to develop prediction data models. The best prediction data models are selected based on F1-score rates. We applied two techniques to test SCArD and generate new predictions from the imbalanced test dataset. The first technique uses the best prediction data models. The second technique uses the majority voting ensemble learning model, which combines the best prediction data models to generate the final predictions. The experimental results showed that SCArD is promising and outperformed the other comparative classification models based on the F1-score rates.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference112 articles.

1. Using word embedding and ensemble learning for highly imbalanced data sentiment analysis in short Arabic text;Al-Azani;Procedia Computer Science,2017

2. Enhancing deep learning sentiment analysis with ensemble techniques in social applications

3. An experimental evaluation of Bayesian classifiers applied to intrusion detection;Mir;Indian Journal of Science and Technology,2016

4. Thumbs up?

5. Mining with rarity

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3