A survey of graphs in natural language processing

Author:

NASTASE VIVI,MIHALCEA RADA,RADEV DRAGOMIR R.

Abstract

AbstractGraphs are a powerful representation formalism that can be applied to a variety of aspects related to language processing. We provide an overview of how Natural Language Processing problems have been projected into the graph framework, focusing in particular on graph construction – a crucial step in modeling the data to emphasize the phenomena targeted.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference136 articles.

1. Zhu X. , and Lafferty J. 2005. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. In Proceedings of the 22nd International Conference on Machine Learning, Bonn, Germany, 7–11 August 2005, pp. 1052–1059.

2. Zhu X. 2007. Semi-supervised learning literature survey. Technical Report TR 1530, Computer Sciences, University of Wisconsin, Madison.

3. Yan R. , Lapata M. , and Li X. 2012. Tweet recommendation with graph co-ranking. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, Korea, 8–14 July 2012, pp. 516–525.

4. Widdows D. , and Dorow B. 2002. A graph model for unsupervised lexical acquisition. In Proceedings of the 19th International Conference on Computational Linguistics, Taipei, Taiwan, 24 August–1 September 2002.

Cited by 57 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unifying context with labeled property graph: A pipeline-based system for comprehensive text representation in NLP;Expert Systems with Applications;2024-04

2. Multi-View Discrete Clustering: A Concise Model;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

3. Semantic Text Summarization for Myanmar Language using Word Embedding and Graph Based Approach;2023 Seminar on Information Computing and Processing (ICP);2023-11-27

4. Sub-GMN: The Neural Subgraph Matching Network Model;2023 16th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI);2023-10-28

5. Prescriptive graph analytics on the digital transformation in healthcare through user-generated content;Annals of Operations Research;2023-07-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3