Sentence embeddings in NLI with iterative refinement encoders

Author:

Talman AarneORCID,Yli-Jyrä Anssi,Tiedemann Jörg

Abstract

AbstractSentence-level representations are necessary for various natural language processing tasks. Recurrent neural networks have proven to be very effective in learning distributed representations and can be trained efficiently on natural language inference tasks. We build on top of one such model and propose a hierarchy of bidirectional LSTM and max pooling layers that implements an iterative refinement strategy and yields state of the art results on the SciTail dataset as well as strong results for Stanford Natural Language Inference and Multi-Genre Natural Language Inference. We can show that the sentence embeddings learned in this way can be utilized in a wide variety of transfer learning tasks, outperforming InferSent on 7 out of 10 and SkipThought on 8 out of 9 SentEval sentence embedding evaluation tasks. Furthermore, our model beats the InferSent model in 8 out of 10 recently published SentEval probing tasks designed to evaluate sentence embeddings’ ability to capture some of the important linguistic properties of sentences.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference30 articles.

1. Refining Raw Sentence Representations for Textual Entailment Recognition via Attention

2. A Decomposable Attention Model for Natural Language Inference

3. A large annotated corpus for learning natural language inference

4. Maas A.L. , Hannun A.Y. and Ng A.Y. (2013). Rectifier nonlinearities improve neural network acoustic models. In International Conference on Machine Learning.

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GANLI: Elevating Natural Language Inference through Advanced Gated Attention Mechanisms;2024-05-02

2. BinAug: Enhancing Binary Similarity Analysis with Low-Cost Input Repairing;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-02-06

3. Generating Factual Text via Entailment Recognition Task;Computers, Materials & Continua;2024

4. Biomedical Natural Language Inference on Clinical trials using the BERT-based Models;Procedia Computer Science;2024

5. Improving Natural Language Inference with Residual Attention;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3