Improving short text classification with augmented data using GPT-3

Author:

Balkus Salvador V.ORCID,Yan Donghui

Abstract

Abstract GPT-3 is a large-scale natural language model developed by OpenAI that can perform many different tasks, including topic classification. Although researchers claim that it requires only a small number of in-context examples to learn a task, in practice GPT-3 requires these training examples to be either of exceptional quality or a higher quantity than easily created by hand. To address this issue, this study teaches GPT-3 to classify whether a question is related to data science by augmenting a small training set with additional examples generated by GPT-3 itself. This study compares two augmented classifiers: the Classification Endpoint with an increased training set size and the Completion Endpoint with an augmented prompt optimized using a genetic algorithm. We find that data augmentation significantly increases the accuracy of both classifiers, and that the embedding-based Classification Endpoint achieves the best accuracy of about 76%, compared to human accuracy of 85%. In this way, giving large language models like GPT-3 the ability to propose their own training examples can improve short text classification performance.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Reference56 articles.

1. Zhang, H. , Cisse, M. , Dauphin, Y. N. and Lopez-Paz, D. (2018). mixup: Beyond empirical risk minimization. In International Conference on Learning Representations.

2. Vaswani, A. , Shazeer, N. M. , Parmar, N. , Uszkoreit, J. , Jones, L. , Gomez, A. N. , Kaiser, L. and Polosukhin, I. (2017). Attention is all you need. arXiv:1706.03762.

3. OpenAI (2022). Embeddings. OpenAI Documentation. Available at https://platform.openai.com/docs/guides/embeddings/what-are-embeddings

4. Deep Learning--based Text Classification

5. A Survey on Transfer Learning

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3