Evaluation of text coherence for electronic essay scoring systems

Author:

MILTSAKAKI E.,KUKICH K.

Abstract

Existing software systems for automated essay scoring can provide NLP researchers with opportunities to test certain theoretical hypotheses, including some derived from Centering Theory. In this study we employ the Educational Testing Service's e-rater essay scoring system to examine whether local discourse coherence, as defined by a measure of Centering Theory's Rough-Shift transitions, might be a significant contributor to the evaluation of essays. Rough-Shifts within students' paragraphs often occur when topics are short-lived and unconnected, and are therefore indicative of poor topic development. We show that adding the Rough-Shift based metric to the system improves its performance significantly, better approximating human scores and providing the capability of valuable instructional feedback to the student. These results indicate that Rough-Shifts do indeed capture a source of incoherence, one that has not been closely examined in the Centering literature. They not only justify Rough-Shifts as a valid transition type, but they also support the original formulation of Centering as a measure of discourse continuity even in pronominal-free text. Finally, our study design, which used a combination of automated and manual NLP techniques, highlights specific areas of NLP research and development needed for engineering practical applications.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Literature Review and the Present Study;Dependency Structures from Syntax to Discourse;2023-08-09

2. Improving the Generalization Ability in Essay Coherence Evaluation Through Monotonic Constraints;Natural Language Processing and Chinese Computing;2023

3. Local and global context-based pairwise models for sentence ordering;Knowledge-Based Systems;2022-05

4. A Discourse Coherence Analysis Method Combining Sentence Embedding and Dimension Grid;Complexity;2021-11-05

5. Unsupervised Discourse Constituency Parsing Using Viterbi EM;Transactions of the Association for Computational Linguistics;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3