Transfer learning for Turkish named entity recognition on noisy text

Author:

Kağan Akkaya EmreORCID,Can BurcuORCID

Abstract

AbstractIn this article, we investigate using deep neural networks with different word representation techniques for named entity recognition (NER) on Turkish noisy text. We argue that valuable latent features for NER can, in fact, be learned without using any hand-crafted features and/or domain-specific resources such as gazetteers and lexicons. In this regard, we utilize character-level, character n-gram-level, morpheme-level, and orthographic character-level word representations. Since noisy data with NER annotation are scarce for Turkish, we introduce a transfer learning model in order to learn infrequent entity types as an extension to the Bi-LSTM-CRF architecture by incorporating an additional conditional random field (CRF) layer that is trained on a larger (but formal) text and a noisy text simultaneously. This allows us to learn from both formal and informal/noisy text, thus improving the performance of our model further for rarely seen entity types. We experimented on Turkish as a morphologically rich language and English as a relatively morphologically poor language. We obtained an entity-level F1 score of 67.39% on Turkish noisy data and 45.30% on English noisy data, which outperforms the current state-of-art models on noisy text. The English scores are lower compared to Turkish scores because of the intense sparsity in the data introduced by the user writing styles. The results prove that using subword information significantly contributes to learning latent features for morphologically rich languages.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3