Abstract
AbstractThe distributional similarity methods have proven to be a valuable tool for the induction of semantic similarity. Until now, most algorithms use two-way co-occurrence data to compute the meaning of words. Co-occurrence frequencies, however, need not be pairwise. One can easily imagine situations where it is desirable to investigate co-occurrence frequencies of three modes and beyond. This paper will investigate tensor factorization methods to build a model of three-way co-occurrences. The approach is applied to the problem of selectional preference induction, and automatically evaluated in a pseudo-disambiguation task. The results show that tensor factorization, and non-negative tensor factorization in particular, is a promising tool for Natural Language Processing (nlp).
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Linguistics and Language,Language and Linguistics,Software
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献