Language and Ideology in Congress

Author:

Diermeier Daniel,Godbout Jean-François,Yu Bei,Kaufmann Stefan

Abstract

Legislative speech records from the 101st to 108th Congresses of the US Senate are analysed to study political ideologies. A widely-used text classification algorithm – Support Vector Machines (SVM) – allows the extraction of terms that are most indicative of conservative and liberal positions in legislative speeches and the prediction of senators’ ideological positions, with a 92 per cent level of accuracy. Feature analysis identifies the terms associated with conservative and liberal ideologies. The results demonstrate that cultural references appear more important than economic references in distinguishing conservative from liberal congressional speeches, calling into question the common economic interpretation of ideological differences in the US Congress.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science

Reference66 articles.

1. ‘Inductive Learning Algorithms and Representations for Text Categorization’;Dumais;Proceedings of the 7th International Conference on Information and Knowledge Management,1998

2. Learning to classify documents according to genre

3. Structure-induced equilibrium and legislative choice

4. The Statistical Analysis Of Roll-Call Data: A Cautionary Tale

5. The Congressional Debate on Partial-Birth Abortion: Constitutional Gravitas and Moral Passion

Cited by 92 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3