Microglia: a newly discovered role in visceral hypersensitivity?

Author:

Saab Carl Y.,Wang Jing,Gu Chunping,Garner Kirsten N.,Al-Chaer Elie D.

Abstract

AbstractGiven the growing body of evidence for a role of glia in pain modulation, it is plausible that the exaggerated visceral pain in chronic conditions might be regulated by glial activation. In this study, we have investigated a possible role for microglia in rats with chronic visceral hypersensitivity and previously documented altered neuronal function. Experiments were performed on adult male Sprague-Dawley rats pre-treated with neonatal colon irritation (CI) and on control rats. Effects of fractalkine (FKN, a chemokine involved in neuron-to-microglia signaling) and of minocycline (an inhibitor of microglia) on visceral sensitivity were examined. Visceral sensitivity was assessed by recording the electromyographic (EMG) responses to graded colorectal distension (CRD) in mildly sedated rats. Responses to CRD were recorded before and after injection of FKN, minocycline or vehicle. Somatic thermal hyperalgesia was measured by latency of paw withdrawal to radiant heat. The pattern and intensity of microglial distribution at L6–S2 in the spinal cord was also compared in rats with CI and controls by fluorescence microscopy using OX-42. Results show that: (1) FKN significantly facilitated EMG responses to noxious CRD by >52% in control rats. FKN also induced thermal hyperalgesia in control rats, consistent with previous reports; (2) minocycline significantly inhibited EMG responses to noxious CRD by >70% in rats with CI compared to controls 60 min after injection. The anti-nociceptive effect of minocycline lasted for 180 min in rats with CI, reaching peak values 60 min after injection. Our results show that FKN enhances visceral and somatic nociception, whereas minocycline inhibits visceral hypersensitivity in chronically sensitized rats, which indicates a role for microglia in visceral hypersensitivity.

Publisher

Cambridge University Press (CUP)

Subject

Cell Biology,Cellular and Molecular Neuroscience

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3