Control of giant ragweed (Ambrosia trifida) in mesotrione-resistant soybean

Author:

Westrich Benjamin C.ORCID,Johnson William G.,Young Bryan G.

Abstract

Abstract Preemergence applications of mesotrione, an herbicide that inhibits 4-hydroxyphenolpyruvate dioxygenase (HPPD), have recently gained regulatory approval in soybean varieties with appropriate traits. Giant ragweed is an extremely competitive broadleaf weed, and biotypes resistant to acetolactate synthase inhibitors (ALS-R) can be particularly difficult to manage with soil-residual herbicides in soybean production. This study investigated control of giant ragweed from preemergence applications of cloransulam (32 g ai ha–1), metribuzin (315 g ai ha–1), and S-metolachlor (1,600 g ai ha–1) in a factorial design with and without mesotrione (177 g ai ha–1) at two different sites over 2 yr. Treatments with mesotrione were also compared with two commercial premix products: sulfentrazone (283 g ai ha–1) and cloransulam (37 g ai ha–1), and chlorimuron (19 g ai ha–1), flumioxazin (69 g ai ha–1), and pyroxasulfone (87 g ai ha–1). At 42 d after planting, control and biomass reduction of giant ragweed were greater in treatments with mesotrione than any treatment without mesotrione. Giant ragweed biomass was reduced by 84% in treatments with mesotrione, whereas treatments without mesotrione did not reduce biomass relative to the nontreated. Following these preemergence applications, sequential herbicide treatments utilizing postemergence applications of glufosinate (655 g ai ha–1) plus fomesafen (266 g ai ha–1) and S-metolachlor (1,217 g ai ha–1) resulted in at least 97% control of giant ragweed at 42 d after planting, which was greater than sequential applications of glufosinate alone in 3 of 4 site-years. Preemergence applications of mesotrione can be an impactful addition to soybean herbicide programs designed to manage giant ragweed, with the potential to improve weed control and delay the onset of herbicide resistance by providing an additional effective herbicide site of action.

Publisher

Cambridge University Press (CUP)

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3